Written by: Posted on: 08.08.2014

Ферменты - двигатели жизни в. и. розенгарт

У нас вы можете скачать книгу ферменты - двигатели жизни в. и. розенгарт в fb2, txt, PDF, EPUB, doc, rtf, jar, djvu, lrf!

В нашем организме постоянно происходят десятки тысяч различных биохимических реакций. Каждый из процессов, протекающих в организме, требует вмешательства химических регуляторов — ферментов. Без их слаженной работы не было бы жизни! Ферменты — это биологические катализаторы ускорители химических реакций.

По своей структуре — это белки, которые способны в тысячи раз ускорить биохимические реакции, при этом, не принимая в ней участия. Так, если бы ферментов не было, то все процессы в организме замедлились бы почти до полной остановки. Возможность дышать, переваривать пищу , передвигаться и многое другое — результат слаженной работы ферментов. Подкласс это последняя низшая ступень классификации. Внутри подклассов перечисляют уже отдельные, индивидуальные ферменты. Таким образом, вся система проста и достаточно стройна: В соответствии с этим принципом классификации предложена очень удобная система нумерации индексации ферментов.

Каждый индекс состоит из четырёх цифр, разделённых точками: Розенгарт Ферменты- двигатели жизни Например, амилаза-фермент, гидролизующий крахмал с которой мы уже встречались неоднократно, имеет индекс 3.

Классификация ферментов построена так, что в ней оставлены свободные места для ещё не открытых ферментов. Наименования ферментам давали по случайным признакам тривиальная номенклатура , по названию субстрата рациональная , по химическому составу фермента, наконец, по типу катализируемой реакции и характеру субстрата. Примерами тривиальной номенклатуры могут служить названия таких ферментов, как пепсин от греч.

По действию все эти ферменты являются протеолитическими, т. Характерное название была дано группе окрашенных внутриклеточных ферментов, ускоряющих окислительно-восстановительные реакции в клетке, - цитохромы от лат.

Наибольшее распространение получила рациональная номенклатура , согласно которой название фермента составляется из названия субстрата характерного окончания -аза. Она была предложена более столетия тому назад, в г. Дюкло - учеником Л. Так, фермент, ускоряющий реакцию гидролиза крахмала, получил название амилаза от греч. Когда методами аналитической химии были достигнуты известные успехи в расшифровке химической природы простетических групп, возникла новая номенклатура ферментов.

Их стали именовать по названию простетической группы , например, геминфермент простетическая группа - гем , пиридоксаль- фермент простетическая группа - пиридоксаль и т.

Затем в названии фермента стали указывать как на характер субстрата , так и на тип катализируемой реакции. К примеру, фермент, отнимающий водород от молекулы янтарной кислоты, называют сукцинатдегидрогеназой, подчеркивая этим одновременно и химическую природу субстрата, и отнятие атомов водорода в процессе ферментативного действия: Международная комиссия по номенклатуре ферментов представила V Международному биологическому конгрессу проект номенклатуры, построенный на строго научных принципах.

Проект был утвержден конгрессом, и новая номенклатура прочно вошла в ферментологию. Согласно этой Московской номенклатуре название ферментов составляют из химического названия субстрата и названия той реакции, которая осуществляется ферментом.

Если химическая реакция, ускоряемая ферментом, сопровождается переносом группировки атомов от субстрата к акцептору, название фермента включает также химическое наименование акцептора. В этом названии отмечены сразу три особенности: Названия ферментов по научной номенклатуре неизмеримо выигрывают в точности, но становятся в ряде случаев гораздо сложнее старых, тривиальных.

Так, уреаза тривиальное название , ускоряющая реакцию гидролиза - мочевины на оксид углерода IV и аммиак, по научной номенклатуре именуется карбамид - амидогидролазой: Трегалаза, ускоряющая реакцию гидролиза трегалозы, называется трегалозаглюко-гидролазой.. В связи со значительным усложнением научных названий в новой номенклатуре допускается сохранение наряду с новыми старых тривиальных, рабочих названий ферментов.

Международной комиссией был составлен детальный список всех известных в то время ферментов, существенно дополненный в г. Таким образом, исключается возможность путаницы в наименовании ферментов. Что бы понять и правильно оценить результаты определения ферментативной активности, нужно совершенно отчётливо представить себе, от каких факторов зависит скорость реакции, какие условия оказывают на неё влияние. Прежде всего это соотношение концентрации самих реагирующих веществ: Далее, это всевозможные особенности той среды, в которой протекает реакция: Попытаемся рассмотреть поближе эти условия.

Для большинства известных в настоящее время ферментов определён оптимум РН, при котором они обладают максимальной активностью.

Эта величина- важный критерий, служащий для характеристик фермента. Иногда это свойство ферментов используют для их препаративного разделения. Наличие оптимума РН можно объяснить тем. Что ферменты представляют собой полиэлектролиты и их заряд зависит от значения РН Смотри приложение 2.

Иногда сопутствующие вещества могут изменить оптимум РН, например буферные растворы. В некоторых случаях в зависимости от субстратов ферменты с неярко выраженной специфичностью имеют несколько оптимумов. Например, пепсин расщепляет белки яйца при РН 1,5- 2,0, синтетические субстраты- при РН 4,0.

Отсюда следует, что величина РН оптимум - весьма чувствительный признак для данного фермента. Она зависит от природы субстрата, состава буферного раствора и поэтому не является истинной константой. Нужно иметь в виду также свойства ферментов как белковых тел, способных к кислотно-щелочной денатурации. Поэтому при определении оптимума РН, в котором сохраняется физико-химическая стабильность фермента. Кислотно-щелочная денатурация может привести к необратимым изменениям структуры фермента с утратой его каталитических свойств.

Такие вещества получили название активаторов. При этом вещества, катализирующие ферментативные реакции, непосредственного участия в них не принимают.

На активность одних ферментов существенно влияет концентрация солей в системе, другие ферменты не чувствительны к присутствию ионов. Именно он охарактеризовал фермент как агент, вызывающий химические процессы в организме и управляющий ими.

Качественный скачёк в развитии учения о ферментациях произошёл в связи с исследованиями великого французского химика Антуана Лавуазье, совершившего переворот в химии и впервые внедрившего в химические исследования строгие количественные методы. К концу XVIII века уже было известно, что встречаются химические процессы, протекающие с участием какого-то агента, без которого процесс практически не идёт. Первые успехи были достигнуты при изучении превращения крахмала в сахар.

Решающая роль в этих исследованиях принадлежит работам петербургского академика К. С Кирхгофа, которые открыли новую страницу в истории и химия ферментов. В начале XIX века было открыто немало химических реакций, среди них были и некоторые ферментативные реакции. Юстус Либих был одним из наиболее крупных авторитетов среди химиков XIX века.

В это время было открыто ещё несколько ферментов. В году Т. Шванн впервые обнаружил в желудочном соке фермент животного происхождения, названный им пепсином. Несколько позже, в году, А. Корвизар описал другой фермент, переваривающий белки - трипсин. В году - Эдуард Бухнер был удостоен Нобелевской премии по химии.

Розенгарт Ферменты- двигатели жизни. Было выявлено, что все они представляют собой вещества белковой природы и, как все белки могут быть простыми и сложными в зависимости от сопутствующего компонента небелкового характера простетической группы. Так мы подчёркивали, что свойство каждого белка определяется последовательностью расположения остатков аминокислот в их молекуле. Эта последовательность называется первичной структурой белка. В последние годы разработаны очень надёжные, и даже автоматизированные методы изучения первичной структуры, что дало возможность определить.

Помимо первичной структуры, определяемой последовательностью расположения аминокислот, для проявления специфических свойств белка в ном числе ферментативной активности важную роль играют более высокие уровни - вторичная и третичная структуры, сущность которых заключается в определённом расположение полипептидных цепей в пространстве.

Вторичная и третичная структуры белков поддерживаются сравнительно слабыми внутримолекулярными связями, и поэтому легко могут быть разрушены разными физическими и химическими воздействиями. Такое нарушение высших структур белка без повреждения его первичной структуры составляет сущность денатурации. При денатурации белок нередко утрачивает свои биологические свойства, в случае ферментов исчезает ферментативная активность.

Современные методы исследования позволяют получить представление не только о первичной структуре белков. Есть ферменты, для которых полностью выяснено пространственное расположение атомов, составляющее их молекулу, то- есть расшифрованы вторичная и третичная структуры. Это достигнуто благодаря применению исключительно тонкого и сложного метода, так называемого рентгеноструктурного анализа.

Некоторым белкам свойственен ещё более высокий уровень структуры - четвертичная структура. Это уже надмолекулярный уровень: Каждая отдельная молекула такого белка, составляющая четвертичный комплекс, называется субъединицей. Многие ферменты построены из субъединиц. В одних случаях субъединиц сами обладают активностью, в других их субъединиц по отдельности неактивны.

Субъединицы, сопоставляющие молекулу фермента, могут быть одинаковыми, но могут и отличатся друг от друга. Представление о молекуле фермента как структуре, состоящей из субъединиц , позволяет нам объяснить одно очень интересное и практически важное явление. Существуют ферменты, различающиеся по строению, но катализирующие одну и ту же реакцию, они называются изоферментами.

Такие ферменты довольно широко распространены в организме, и их выявление имеет большое значение в медицине. Специфичность ферментов проявляется по- разному и может быть выражена в разной степени. Прежде всего следует различать специфичность по отношению к субстрату и к типу химической реакции, катализируемой ферментом. Каждый фермент катализирует одну химическую реакцию или группу реакций одного типа.

Она катализируется ферментом трансиминазой и состоит в переносе аминогруппы с аминокислоты на кетонокислоту. Наряду с только, что описанной формой специфичности фермента по отношению к катализируемой им реакции существует и другая, тесно связанная с первой форма специфичности, выражающаяся в способности фермента атаковать субстрат только определённого химического строения.

Иногда фермент способен действовать только на один единственный субстрат, тогда говорят, что он обладает абсолютной специфичностью. Значительно чаще фермент влияет на группу субстратов, имеющих сходное строение.

Такую специфичность называют групповой. Особый интерес представляет так называемая стереохимическая специфичность, состоящая в том, что фермент действует на субстрат или группу субстратов, отличающихся особым расположением атомов в пространстве. Хорошим примером фермента , обладающего очень высокой, практически абсолютной специфичностью может служить уреаза, катализирующая гидролиз мочевины. Долгое время считалось, что мочевина является единственным субстратом уреазы.

Но не так давно было показано, что кристаллическая уреаза может действовать и на близкого родственника мочевины - оксимочевину, отличающуюся наличием в молекуле одного атома кислорода.

Она характеризует подавляющее большинство ферментов и состоит в том, что фермент, проявляя свойственную ему специфичность по отношению к реакции, способен действовать не на один, а на несколько, иногда на большое число субстратов со сходным химическим строением. Примером служит химотрипсин, расщепляющий только пептидную связь. Стереохимическая и оптическая специфичность имеет особое значение.

Проявляется только в случае оптически активных веществ, и фермент активен только по отношению к одной стереоизомерной форме соединения. Например, L- аргиназа разлагает L-аргинин на L- орнитин и мочевину, но не действует на А- аргинин. Известным примером служит d и L- специфичность оксидаз аминокислот.

Стереохимическая и оптическая активность так- же может быть абсолютной и относительной; например, карбоксипептидаза, расщепляющая карбобензокси -глицил-L- фенилаланин совсем не действует на субстрат с А- фенилаланином: После того как стало возможным исследование ферментов в бес клеточной среде, была окончательно установлена их химическая природа.

Было выявлено, что все они представляют собой вещества белковой природы и как все белки, могут быть простыми и сложными в зависимости от сопутствующего компонента небелкового характера простетической группы.

Ферменты- простые белки- построены только из аминокислот, и их каталитические свойства обусловлены свойством самой белковой молекулы. К этой группе ферментов относится большинство гидролитических ферментов. Ферменты- сложные белки- содержат в своём составе, помимо белкового компонента, ещё и небелковый- например, нуклеотиды, геминовую группу, витамины, атомы катионы металла. К таким ферментам обычно относятся ферменты окислительно-восстановительного действия. Прочность связи между белковым компонентом и простетической группой в сложных ферментах может быть различной.

В некоторых случаях связь прочная, в других - простетическая группа довольно легко отделяется, например при диализе. Легко диссоциирующие простетические группы ферментов получили название коферментов. При отделении простетической группы от белковой части фермента - последний теряет свою активность. В простых ферментах активный центр образуется непосредственно группировкой аминокислотных остатков в спиральной цепи белковой молекулы. В сложных ферментах он образуется простетической группой и некоторыми прилегающими к ней остатками.

Размер активных центров значительно меньше самой молекулы фермента. На один активный центр приходится масса молекулы с молекулярным весом В простых ферментах пространственная группировка этих аминокислотных остатков сама по себе определяет структуру активного центра и каталитическую активность фермента. В сложных ферментах структура активного центра определяется простетической группой и боковыми группами некоторых аминокислотных остатков, пространственная структура которых оказывает существенное влияние на специфичность и каталитическую активность небелкового компонента.

Среди таких аминокислотных остатков наибольшее значение имеют SH- группы цистеина, OH- группы серина, несколько меньшее значение имеет индольная группа триптофана, карбонильные группы дикарбоновых аминокислот. Компоненты активного центра нельзя представлять последовательно расположенными на, каком - либо участке цепи.

По- видимому , активный центр формируется из компонентов, удалённых в первичной структуре полипептидной цепи, но пространственно сближенных благодаря специфической укладке полипептидной цепи. Сейчас известно около 2 тысяч ферментов, но список этот не закончен. В зависимости от типа катализируемой реакции все ферменты подразделяются на 6 классов:. Они осущевствляют перенос водорода и электронов и по своим привиальным названием известны как дегидрогеназы, оксидазы и пероксидазы.

Эти ферменты отличаются тем, что имеют специфические коферменты и простетические группы. Среди них известны ферменты осуществляющие транспорт больших остатков, например гликозилтрансферазы и другие. Трансферазы благодаря разнообразию переносимых ими остатков принимают участие в промежуточном обмене веществ.

В зависимости от этого среди них различают эстеразы, расщипляющие сложноэфирную связь между карбоновыми кислотами липаза тиоловых эфиров, фосфоэфирную связь и так далее; гликозидазы, расщепляющие гликозидные связи, пептид - гидролазы, действует на пептидную связь и другие. К этой группе относятся ферменты, способные отщеплять различные группы от субстрата не гидролитическим путём с образованием двойных связей или, напротив, присоединять группы к двойной связи.

Лиазы играют весьма важную роль в процессе обмена веществ. К ним относятся не только ферменты, стимулирующие реакции взаимных переходов оптических и геометрических изомеров, но и такие, которые могут способствовать превращению альдоз в кетозы или перемещению эфирной связи и другие. Раньше эти ферменты не отделяли от лиаз, так как реакция последних часто идёт в двух направлениях, однако недавно было выяснено, что синтез и распад в большинстве случаев происходит под влиянием различных ферментов, и на этом основании выделен отдельный класс лигаз синтетаз.

Ферменты, обладающие двойным действием, получили название бифункциональных. Лигазы принимают участие в реакции соединения двух молекул, то есть синтетических процессах, сопровождающихся расщеплением макроэнергитических связей АТФ или других макроэргов.

Далее, внутри классов ферменты делят на подклассы, руководствуясь строением субстрата. В подклассы объединяют ферменты данного класса, действующие на сходно построенные субстраты. На этом деление не заканчивается. Ферменты каждого подкласса разбивают на подклассы, в которых ещё строже уточняют структуру химических групп, отличающих субстраты друг от друга.

Такую специфичность называют груповойгрупповой. ОСобыйОсобый интерес представляет так называемая стереохимическая специфичность, состоящая в том, что фермент действует на субстрат или группу субстратов, отличающихся особым расположением атомов в пространстве. Абсолютная специфичность встречается редко. Хорошим примером фермента , обладающего очень высокой, прктическипрактически абсолютной специфичностью может служить уреаза, катализирующая гидролиз мочевины.

Но не так давно было показано, что кристалическаякристаллическая уреаза может действовать и на близкого родственника мочивины-мочевины - оксимочевину, отличающуюся наличием в молекуле одного атома кислорода. Розенгарт Ферменты- двигатели жизниДЖ Таким образом, понятие "абсолютная специфичность" является в известной мере относительным.

Она характеризует подовляющееподавляющее большинство ферментов и состоит в том, что фермент, проявляя свойственную ему специфичность по отношению креакциик реакции, способен действовать не на один, а на несколько, иногда на большое число субстратов со сходным химическим строением.

Относительно групповая специфичность проявляется тогда, когда фермент безразличен к структуре соединения и имеет значение лишь тип связи. Примером служит химотрипсин, расщепляющий только пептидную связь. Стереохимическая и оптическая специфичность имеет особое значение. Проявляется только в случае оптически активных веществ, и фермент активен только по отношению к одной стереоизомерной форме соединения.

Например, L- аргимназа разлагает L-аргитнин на L- орнитин и мочевину, но не действует на Аa- аргининт. Известным примером служит d и L- специфичность оксидаз аминокислот. Стереохимическая и оптическая активность так- же может быть абсолютной и относительной; например, карбоксипептидаза, расщепляющая карбобензокси -глицил-L- фенилаланин совсем не действует на субстрат с Аd- фенилаланином: После того как стало возможным исследование ферментов в бесклеточнойбес клеточной среде, была окончательно установлена их химическая природа.

Было выявлено, что все они представляют собой вещества белковой природы и как все белки, могут быть простыми и сложными в зависимости от сопутствующего компонента небелкового характера простетической группы. Ферменты- простые белки- построены только из аминокислот, и их каталитические свойства обусловлены свойством самой белковой молекулы. К этоцэтой группе ферментов относится большинство гидролитических ферментов.

Ферменты- сложные белки- содержат в своём составе, помимо белкового компонента, ещё и небелковый- например, нуклеотиды, геминовую группу, витамины, атомы катионы металла. К таким фермантамферментам обычно относятся ферменты окислительно- восстановительногоокислительно- восстановительного действия. Прочность связи между белковым компонентом и простетической группой в сложных ферментах может быть различной. В некоторых случаях связь прочная, в других - простетическая группа довольно легко отделяется, например при диализе.

Легко диссоциирующие простетические группы ферментов получилиназваниеполучили название коферментов. При отделении простетической группы от белковой части фермента - последний теряет свою активность. В простых ферментах активный центр образуется непосредственно группировкой аминокислотных остатков в спиральной цепи белковой молекулы.

В сложных ферментах он образуется простетической группой и некоторыми прилегающими к ней остатками. Размер активных центров значительно меньше самой молекулы фермента. На один активный центр приходится масса молекулы с молекулярным весом В простых ферментах пространственная группировка этих аминокислотных остатков сама по себе определяет структуру активного уентрацентра и каталитическую активность фермента. В сложных ферментах структура активного центра определяется простетической группой и боковыми группами некоторых аминокислотных остатков, пространственная структура которых оказывает существенное влияние на специфичность и каталитическую активность небелкового компонента.

Среди таких аминокислотных остатков наибольшее значение имеют SH- группы цистеина, OH- группы серина, несколько меньшее значение имеет индольная группа триптофана, карбонильные группы дикарбоновых аминокислот. Компоненты активного центра нельзя представлять последовательно расположенными на, каком - либо участке цепи.

По- видимому , активный центр формируется из компонентов, удалённых в первичной структуре полепиптиднойполипептидной цепи, но пространственно сближенных благодоряблагодаря специфической укладке полипептидной цепи. Сейчас известно около 2 тысяч ферментов, но список этот не закончен. В зависимости от типа катализируемой реакции все ферменты подразделяются на 6 классов: Ферменты, катализирующие окислительно-восстановительные реакции,- реакции оксидоредуктазы; 6.

Ферменты переноса различных групировокгруппировок метильных, амино- и фосфогрупп и другие - трансферазы. Ферменты, осущевствляющие гидролиз химических связей,-связей - гидролазы 8.

About the Author: Ника